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The objective was to determine if mid-infrared diffuse reflectance spectroscopy could be used to
discriminate various food ingredients. Samples (n = 106) consisting of buttermilk, cheese,
dehydrated onion and milk-egg powders, wheat flours, and two powdered seasonings (cheese and
ranch) were scanned as neat powders using diffuse reflectance on Digilab FTS-60 and Perkin-Elmer
model 2000 Fourier transform spectrometers. Discriminant analysis, using mean centering and
multiplicative scatter-corrected spectra, was performed using Mahalanobis distance by principal
component analysis using the averaged predicted distance or F-test indicator to select factors obtained
from a one-out cross-validation analysis. Results from the two spectrometers demonstrated that
discriminant analysis of food ingredient powders based on spectra of neat powders can be successfully
carried out. In general, it was found that results using 4-cm~! resolution spectra were somewhat

superior to those based on lower 16-cm~1 resolution spectra.
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INTRODUCTION

Unlike near-infrared reflectance spectroscopy (NIRS)
which has been used extensively to quantitatively
determine the composition of foods (Osborne and Fearn,
1986) and agricultural products (Williams and Norris,
1987) and for discriminant analysis of both food (Oyabu
and Kubodera, 1989; Devaux et al., 1986, 1987; Downey
et al., 1990) and nonfood materials (Grunenberg, 1989;
Dominguez and Seymour, 1993; Peuchant et al., 1992),
the use of mid-infrared spectroscopy for these same pur-
poses has been more limited. This has been particularly
true when it comes to performing diffuse reflectance
mid-infrared Fourier transform spectroscopy (DRIFTS)
on as-is samples (neat, not diluted with KBr). For
materials, such as food ingredient powders, it has been
believed that dilution with KBr or some other media
(Coleman, 1993) was required to obtain spectra of the
quality needed, and even then, particle size could be a
considerable problem (Olinger and Griffiths, 1993a,b).

Thus, the primary use of mid-infrared spectroscopy
has, until recently, been for identification of samples
by qualitative analysis. These uses include utilization
as detectors for instruments such as gas chromato-
graphs (Coleman, 1993) and HPLCs (Griffith and de
Haseth, 1986) and for the general identification of
unknowns from their mid-infrared spectra (Colthup et
al., 1990). More recently, interest has seemed to
increase in utilizing mid-infrared spectroscopy in areas
in which NIRS has been successful. Some of this is
probably due to the design of new sampling devices,
such as the diamond ATR (ASI, Millersville, MD) which
makes sample handling easier (no need for KBr dilution
or mulls), but is also due to the general need for rapid,
non-waste-generating techniques and to the nature of
mid-infrared spectra and spectroscopy. However, most
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of these efforts have utilized traditional mid-infrared
techniques, i.e., ATR cells, KBr disks, and deposition
on solid substrates such as CaF; disks. For example,
Al-Jowder et al. (1997) used ATR to determine sample
authenticity of meat products, and Kemsley et al. (1996)
used the same techniques for studying adulteration of
raspberry purees. Finally, a considerable amount of
work using mid-infrared has also been performed with
respect to coffee varieties and adulteration using a
variety of techniques including: KBr disks (Suchanek
et al., 1996), extracts on Si—CaF, disks (Dupuy et al.,
1995), and DRIFTS on neat samples (Briandet et al.,
1996a,b; Downey et al., 1997).

While extensive efforts have been carried out on
understanding the basis for mid-infrared spectra and
their interpretation (Colthup et al., 1990; Roeges, 1994),
comparably little has been done in the near-infrared
(NIR) spectral region. Instead of entire books and even
software programs, the information available consists
of a few book chapters (Murray and Williams, 1987).
While there are practical reasons for this, such as the
much shorter time NIRS has been extensively studied
compared to the mid-infrared and the nature of the
users (nonspectroscopists for the most part), there is also
the inherent characteristics of the two spectral regions.
While the mid-infrared spectral region consists of
fundamental and overtone bands (Colthup et al., 1990),
the NIR consists of overtones and combination bands
whose origins can be more difficult to determine (Mur-
ray and Williams, 1987). Indeed, recent efforts have
turned to utilizing correlations of mid-infrared spectra
to NIR spectra to interpret NIR spectra (Barton et al.,
1992; Barton and Himmelsbach, 1993).

The ability to utilize mid-infrared spectra for analysis
in the same fashion as NIR spectra may bring the added
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advantage of spectral interpretability and eliminate the
potential need for a second spectrometer. Since it has
recently been shown that DRIFTS could be utilized to
guantitatively (Reeves, 1994a,b, 1996) and qualitatively
(Briandet et al., 1996a,b; Downey et al., 1997) determine
the composition of neat samples (forages and coffee,
respectively) with an accuracy equal to or better than
that found using NIR spectra, it seemed appropriate to
examine the question of utilizing mid-infrared spectra
for discriminant analysis of a wider range of products.
The objective of this work was to determine the feasibil-
ity of performing discriminant analysis of food ingredi-
ent powders from a variety of sources based on the mid-
infrared spectra obtained by diffuse reflectance with
neat samples.

METHODS

Samples. One hundred six samples consisting of 15 milk-
egg (MILKE) samples collected from multiple sites around the
world, 24 buttermilk powders (BUTTM) collected from across
the United States, 20 (10 hard and 10 soft) wheat flours
(WHEAT) from the AACC check sample program, 14 processed
cheese powders (CHESP) from multiple lots at a single plant,
10 processed cheese seasonings (CHESS) also from multiple
lots at a single plant, 21 processed ranch seasonings (RANCH)
also from multiple lots at a single plant, and 22 regional
dehydrated onion (ONION) powders (single plant, but from
multiple raw material sources) were available for study.
Samples were obtained either from sets of commercial samples
or from production lines and thus represented very diverse
sets of samples for each of the seven sample types. All samples
were in a powder state and were used as-is.

Spectra. All samples were scanned as neat powders using
diffuse reflectance. Samples were scanned on a Digi-Lab (BIO-
RAD, Cambridge, MA) FTS-60 Fourier transform spectrometer
equipped with a KBr beam splitter, ceramic source, DTGS
detector, dry air purge, and diffuse reflectance attachment.
In addition, a custom-made sample transport device was
employed, allowing a sample area approximately 50 x 2 mm
to be scanned (Reeves, 1996). Potassium bromide was used
for the background spectra, and 64 coadded scans were taken
for each sample from 4000 to 400 cm™ at resolutions of 4 and
16 cm~! (sample transport used at both resolutions).

Mid-infrared reflectance analysis was also carried out on a
Perkin-Elmer (The Perkin-Elmer Corp., Norwalk, CT) model
2000 Fourier transform spectrometer from 4000 to 400 cm™*
(KBr beam splitter, wire coil source, DTGS detector) using a
static sample cup (1 cm in diameter with an area of illumina-
tion ~ 0.86 cm in diameter). Potassium bromide was used for
the background spectra, and 64 coadded scans were taken for
each sample from 4000 to 400 cm™* at resolutions of 4 and 16
cm~* (no sample transport used for any samples).

Samples were scanned in the same order on both instru-
ments, but the order was randomized before starting the study
(same random ordering used for all instrument configurations).

Discriminant Analysis. Discriminant analysis was per-
formed using Galactic’s Discriminate program version 1.1G
running under GRAMS/386 (Galactic Industries, Salem, NH).
The method used is similar to that published by Gemperline
and Shah (1990) and is based on principal component analysis
and Mahalanobis distances (Mark and Tunnell, 1985). How-
ever, the method used by the Discriminate program includes
an additional factor based on the spectral residuals to improve
sensitivity. Finally, the Mahalanobis distances for each group
of samples is normalized to the root-mean-squared groupsize
(Mark, 1986). Basically, the program operates by performing
a one-out cross-validation analysis for a group of samples, i.e.,
flours. This is performed in turn for each sample group of
interest, with the resulting calibration characterizing the
group in question. Unknown samples are then processed and
compared to the results for the various groups in order to
determine which group they best fit. The number of factors
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Table 1. Sample Distribution for Various Sample
Groups

group total calibration set  validation set
buttermilk powders 24 16 8
cheese powders 14 10 4
cheese seasonings 10 7 3
milk-egg powders 15 10 5
onion powders 12 8 4
ranch seasonings 11 8 3
wheat flours 20 14 6
totals 106 73 33

for a group were determined using the averaged predicted
distance or F-statistic indicators (whichever indicated the
greater number of factors to use) resulting from a one-out
cross-validation analysis.

Spectra were pretreated using mean centering and multi-
plicative scatter correction (GRAMS/386, 1994). Derivatiza-
tion and averaging of spectral data points was also tried in
efforts to improve the discriminant results. Data sets were
analyzed using two methods: First, all samples from each
group were used in a one-out cross-validation analysis to
characterize each group. The resulting calibrations were then
tested against all the samples. Second, every third sample of
each group was set aside as part of a validation set (total of
33 samples) with the remaining samples (73 total) used to
develop the discriminant models for each group. The resulting
calibrations were then tested against the validation samples
(calibration samples also separately tested). The number of
each type of sample and the distribution between calibration
and validation sets are shown in Table 1. All discriminant
analyses were performed on each of the four sets of data
(Digilab FTS-60 and Perkin-Elmer 2000 at 4- and 16-cm™!
resolutions) and unless otherwise stated used the entire
spectral range.

Finally, in Tables 2—6, two distance parameters are given
(HICORRECT and LOWNEGAT). The HICORRECT is the
highest distance for a sample in a group from the group center.
For example, if all samples fit a group perfectly then they
would all have a distance of 0.00, and therefore the closer the
distances to zero the better. At the other end, one wants
nonmembers to have large distances with infinity being ideal.
The LOWNEGAT is the closest distance of a nonmember to
another group (but greater than 3.00 or it would be considered
a group member and therefore an incorrect classification). The
difference between the two measures gives an indication of
how good the discrimination is, with the greater the difference
the less likely there will be incorrect results for new samples.

RESULTS AND DISCUSSION

Samples. The objective of this work was to deter-
mine the feasibility of using mid-infrared spectroscopy
to discriminate among food ingredients in a production
environment. Examination of the data in Table 1 shows
that a wide variety of materials were analyzed, varying
from samples high in fat (~18% in cheese powders) to
others very low in fat (wheat flours). At the same time,
there was considerable overlap in the composition of the
groups: two groups (milk-egg and buttermilk powders)
were largely milk-based, there were two seasonings
(cheese and ranch) which contained considerable salt,
and many of the groups contained a high percentage of
carbohydrates. Thus, while representing a wide range
of materials, the samples still represented a challenge
for discrimination. At the same time, the small number
of samples contained in many of the groups combined
with the diversity within the groups (see description of
samples in Methods) added to the potential difficulty
in developing discriminant calibrations. Finally, mois-
ture contents were, except for the WHEAT (nominal
12% moisture), very similar for the various sample
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Figure 1. Mid-infrared spectra (4-cm~! resolution, Digilab
FTS-60 spectrometer) of typical samples of (A) milk-egg
powder, (B) wheat flour, (C) cheese powder, and (D) cheese
seasoning (all spectra offset on absorbance axis).

groups, ranging from a nominal 2.5% for the CHESP to
5.0% for the RANCH, thus minimizing moisture as a
discrimination factor. Examination of PCR factors and
loadings using SIMCA also showed that moisture was
not the basis for the discrimination results. In sum-
mary, the samples studied provided an excellent set of
data from which to determine the feasibility of discrimi-
nant analysis for food constituents in a production
environment. Indeed, the diversity present in many of
the sample subsets, i.e., samples from around the world
or country, may well present a greater challenge than
would be needed in a real production environment
where samples within a subset would likely be less
diverse.

Spectra. The mid-infrared spectra of typical samples
for each ingredient grouping may be found in Figures 1
and 2. As shown, for the most part, each product has a
unique spectrum. Even areas of the spectra which at
first look similar, such as the region between 3600 and
2500 cm™1, have different patterns on closer examina-
tion. Perhaps the greatest similarities occur in the
regions between 3000 and 2800 cm~! and again between
700 and 400 cm~t. Overall, however, the spectra are
different indicating that discrimination based on the
spectra should not be a problem, unless the spectra of
samples within groups (i.e., the MILKE or BUTTM)
vary as much as the differences found between groups.
Overall, the mid-infrared spectra shown appear to be
more unique than the corresponding NIR spectra. This
can be seen by examining the NIR spectra for four of
the same samples shown in Figure 3 (Figure 3A—D
corresponds to Figure 1A—D). While the NIR spectra
of the WHEAT and CHESS (Figure 3B,D) look quite
similar, the corresponding mid-infrared spectra (Figure
1B,D) are quite different. Also, note the greater overall
detail found in the mid-infrared spectra, as compared
to the corresponding NIR. It is this detail along with
the larger knowledge base available that likely would
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Figure 2. Mid-infrared spectra (4-cm~! resolution, Digilab
FTS-60 spectrometer) of typical samples of (A) buttermilk
powder, (B) ranch seasoning, and (C) onion powder (all spectra
offset on absorbance axis).
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Figure 3. Near-infrared spectra (scanning monochromator,
10-nm resolution) of typical samples of (A) milk-egg powder,
(B) wheat flour, (C) cheese powder, and (D) cheese seasoning
(all spectra offset on absorbance axis).

make spectral interpretation in the mid-infrared a more
viable option than in the NIR, although it must be noted
that for complex biological samples, such as those
examined here, spectral interpretation can be very diffi-
cult even in the mid-infrared. For example, efforts with
spectral interpretation of modified food starches in the
authors’ laboratory indicated the presence of nitrogen
bands in the samples when no nitrogen was present.
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Figure 4. Mid-infrared spectra (Digilab FTS-60 spectrometer)
from 1900 to 400 cm~* of samples of milk-egg (A and B) and
cheese (C and D) powders, at 4-cm~! (A and C) and 16-cm™?
(B and D) resolutions (all spectra offset on absorbance axis).

In Figure 4, the 4- and 16-cm™! resolution spectra
(FTS-60 instrument) of MILKE and CHESP samples are
shown. As can be seen, the higher resolution spectra
show some finer details not apparent in the lower
resolution spectra. These features do not appear to be
simply due to the higher noise level of the higher
resolution spectra, as many of the details occurred at
the same wavenumbers for the two different samples,
which would not be true of random noise in the spectra.

In Figure 5, 4-cm™1 resolution spectra of the MILKE
and CHESP samples are shown for the FTS-60 and
Perkin-Elmer 2000 instruments. Overall, the spectra
appear quite similar, as might be expected. However,
on close examination there are apparent differences
between the spectra taken on the two spectrometers.
First, the spectra taken on the Perkin-Elmer spectrom-
eter showed a drop off in energy below 500 cm~1. This
is probably due to the windows (coated KBr) used to seal
the Perkin-Elmer instrument, which are not present on
the FTS-60 spectrometer. But there are also other
differences in the form of an apparent increase in
resolution for the Perkin-Elmer instrument. While the
data was collected at the same resolution on both
instruments, there was a difference in the number of
data points collected. For the FTS-60 instrument, data
was taken approximately every 2 cm~! in order to
achieve a resolution of 4 cm~1, while on the Perkin-
Elmer instrument, data was collected every 1 cm™1,
which appears to have resulted in an apparent increase
in resolution. This can be seen in Figure 5 in the region
between 3000 and 2800 cm~! and elsewhere in the
expanded spectra in Figure 6.

Discriminant Analysis. FTS-60 Spectrometer:
4-cm~1 Resolution Spectra, Using All Available Samples
in the Calibration Sets. Results for discriminant analy-
sis using 4-cm™! resolution spectra from the FTS-60
instrument can be seen in Table 2. Results are for one-
out cross-validations using all the samples in each
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Figure 5. Mid-infrared spectra (4-cm~? resolution) of samples
of milk-egg (A and B) and cheese (C and D) powders from
Digilab FTS-60 (A and C) and Perkin-Elmer 2000 (B and D)
spectrometers (all spectra offset on absorbance axis).
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Figure 6. Expanded (2000—400 cm™! only) mid-infrared
spectra (4-cm~! resolution) of samples of milk-egg (A and B)
and cheese (C and D) powders from Digilab FTS-60 (A and C)
and Perkin-Elmer 2000 (B and D) spectrometers (all spectra
offset on absorbance axis).

group. The resulting calibrations were then tested
against all samples from all groups. All spectra were
mean-centered and multiplicative scatter-corrected.
As can be seen by the results in Table 2, using spectra
pretreated only by mean centering and multiplicative
scatter correcting resulted in calibrations which cor-
rectly classified all samples. The use of derivatives or
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Table 2. Discriminant Results Using Spectra (4-cm~! Resolution and All Samples within Each Group) from Digilab

FTS-60 Spectrometer?

absorbance spectra, no derivative

group® CORRECT® INCORRECT¢ FALSEPOSIT® HICORRECTf LOWNEGATY
BUTTM 24 0 0 1.41 8.97
CHESP 14 0 0 1.14 49.18
CHESS 10 0 0 131 18.01
MILKE 15 0 0 121 9.10
ONION 12 0 0 1.33 21.52
RANCH 11 0 0 1.35 10.48
WHEAT 20 0 0 1.24 35.37

a All spectra were mean-centered and multiplicative scatter-corrected. P BUTTM, buttermilk powders; CHESP, cheese powders; CHESS,
cheese seasonings; MILKE, milk-egg powders; ONION, onion powders; RANCH, ranch seasoning; WHEAT, wheat flours. ¢ Samples within
the specified group correctly placed in that group when testing using calibrations from all groups. ¢ Samples within the specified group
not correctly placed in that group when testing using calibrations from all groups. @ Samples from another group placed in specified
group when testing using calibrations from all groups. f Farthest distance from group of any correctly placed sample within the specified
group when testing using calibrations from all groups. 9 Lowest distance from group of any sample correctly identified as not being a

member of the group.

Kubelka Munk spectra (derivatized and nonderivatized)
were not of any additional benefit (data not shown).
These results contrast with NIR results, where the use
of derivatives improved calibrations (Reeves and Zapf,
unpublished data).

A detailed exploration of the effect of derivatizing,
mean-centering, and multiplicative scatter-correcting
spectra showed that the use of first derivatives with
gaps of 8, 16, or 32 data points or a second derivative
with a gap of 32 data points resulted in calibrations
which correctly classified the samples but were not of
any additional benefit, while the use of second deriva-
tives with gaps of 8 or 16 data points resulted in some
false positives. Other derivatives with either more
narrow or very wide gaps were also tried (data not
shown) but were not found to be of further benefit.

Finally, the results (data not shown) obtained when
spectral data points were averaged (decreased resolution
and noise) showed that averaging data points had
virtually no effect on the resulting calibration accuracy.
The only readily apparent change was a decrease in the
distance of the closest non-MILKE sample to the
MILKE group (LOWNEGAT) from approximately 9
(using the full spectra) to approximately 7 when averag-
ing data points.

FTS-60 Spectrometer: 4-cm~! Resolution Spectra,
Using Two-Thirds of Samples in the Calibration Sets
and One-Third as Validation Set. The application of
calibrations developed using two-thirds of the total
samples to the remaining one-third of the samples
(independent validation set) gave the results in Table
3. Asingle validation sample of the CHESS group was
incorrectly identified with a distance of 3.31, just outside
the limit of 3.0 recommended by Galactic for inclusion
but still well-separated from the lowest distance
(LOWNEGAT) of a nongroup member (5.01). It should
also be noted that while the Galactic software recom-
mends a distance of 3.0 or less for inclusion, it also
states that work by Mark and Tunnell (1985) has shown
that, while a distance of 3.0 may be theoretically
justified, in reality, distances as great as 10—15 can
work better depending on the samples in question.

Adjusting the number of factors used for the various
calibrations gave the results in the bottom of Table 3.
Although there were two incorrectly classified samples,
with distances of 3.92 (ONION) and 4.09 (RANCH) from
their proper groups, comparisons to the distances for
nongroup members (13.26 for ONION and 14.30 for
RANCH) shows that all samples could be correctly

classified by slightly increasing the distance limit (for
inclusion in those groups) with no danger of including
a nonmember in a group (false positive). Overall, these
results were better than that achieved using NIR
spectra, although for unknown reasons, the low negative
distances were often much greater for NIR spectra
(Reeves and Zapf, unpublished data). Averaging data
points and derivatization (data not shown) made no
difference in the calibration/validation results shown
here.

While adjusting the number of factors used, to im-
prove the results, is not conventional, it does demon-
strate that accurate discrimination was feasible. In a
production environment, experience over time would
show whether the number of factors used should be
more or less than indicated by the indicators used here.
There are a wide variety of indicator functions available,
many of which would select more factors than utilized
in this study. Also, with small data sets, one is more
limited in how many factors can be used.

FTS-60 Spectrometer: 16-cm~! Resolution Spectra,
Using All Available Samples in the Calibration Sets. The
results using 16-cm™1 resolution spectra from the FTS-
60 instrument in a one-out cross-validation using all the
samples in each group may be seen in Table 4. Unlike
the results using 4-cm™1 spectra (Table 2), all samples
were not correctly classified, with two BUTTM samples
also identified (false positives) as being MILKE samples.
Trial and error manipulation of the number of factors
used for the MILKE calibration was able to correct the
calibration (data not shown), but this was not necessary
when using 4-cm~! resolution spectra from the same
instrument or when averaging the 4-cm~! resolution
spectra to give the same effective resolution (data not
shown). Also, derivatization was of no additional ben-
efit.

It is interesting that the results using 16-cm~1 resolu-
tion spectra were not as good as those achieved using
the higher resolution 4-cm~! spectra, even when the
4-cm~1 spectra were averaged to give the same or even
fewer number of spectral data points [1870, 468, 234,
and 117, respectively, for the full and averaged (4, 8, or
16 data points) 4-cm~1 spectra versus 468 for the 16-
cm~! spectra]. While averaging spectral data points
reduces the noise in the spectra, this would not seem
to be involved, since the 16-cm~! spectra would be
significantly lower in noise than the 4-cm~! spectra.

Since it is not a question of noise, and since there is
no question that when averaging the 4-cm™! spectra
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Table 3. Discriminant Analysis with Two-Thirds of Each Group as a Calibration Set and One-Third as the Validation
Set?

group® CORRECT® INCORRECTH FALSEPOSIT® HICORRECTf LOWNEGATY
Calibration Set
BUTTM 16 0 0 1.25 5.02
CHESP 10 0 0 1.29 8.46
CHESS 7 0 0 1.18 4.34
MILKE 10 0 0 1.28 5.50
ONION 8 0 0 1.55 8.25
RANCH 8 0 0 1.67 6.14
WHEAT 14 0 0 1.47 10.02
Validation Set
BUTTM 8 0 0 2.23 4.58
CHESP 4 0 0 1.15 8.44
CHESS 2 1(3.31) 0 2.64 5.01
MILKE 5 0 0 2.91 11.56
ONION 4 0 0 1.84 7.47
RANCH 3 0 0 1.12 6.55
WHEAT 6 0 0 1.80 9.71
Best Achievable for Calibration Set
BUTTM 16 0 0 1.25 5.02
CHESP 10 0 0 1.29 8.46
CHESS 7 0 0 1.09 16.95
MILKE 10 0 0 1.28 5.50
ONION 8 0 0 1.32 11.57
RANCH 8 0 0 1.32 14.67
WHEAT 14 0 0 1.47 30.93
Best Achievable for VValidation Set
BUTTM 8 0 0 2.23 4.58
CHESP 4 0 0 1.15 8.44
CHESS 3 0 0 1.63 19.90
MILKE 5 0 0 2.91 11.56
ONION 3 1(3.92) 0 1.90 13.26
RANCH 2 1(4.09) 0 1.20 14.30
WHEAT 6 0 0 1.80 32.62

a 4-cm~1 resolution spectra from Digilab FTS-60 instrument, mean-centered and multiplicative scatter-corrected. ® BUTTM, buttermilk
powders; CHESP, cheese powders; CHESS, cheese seasonings; MILKE, milk-egg powders; ONION, onion powders; RANCH, ranch
seasoning; WHEAT, wheat flours. ¢ Samples within the specified group correctly placed in that group when testing using calibrations
from all groups. ¢ Samples within the specified group not correctly placed in that group when testing using calibrations from all groups
(numbers in parentheses are distances from group). ¢ Samples from another group placed in specified group when testing using calibrations
from all groups. f Farthest distance from group of any correctly placed sample within the specified group when testing using calibrations
from all groups. 9 Lowest distance from group of any sample correctly identified as not being a member of the group.

Table 4. Discriminant Results Using Spectra (16-cm~! Resolution and All Samples within Each Group) from Digilab
FTS-60 Spectrometer?

absorbance spectra, no derivative

group® CORRECT® INCORRECT¢ FALSEPOSIT® HICORRECTf LOWNEGAT?
BUTTM 24 0 2 1.29 4.46
CHESP 14 0 0 1.34 21.29
CHESS 10 0 0 1.15 5.96
MILKE 15 0 0 1.44 6.77
ONION 12 0 0 1.39 11.43
RANCH 11 0 0 1.62 7.62
WHEAT 20 0 0 1.29 18.20

a All spectra mean-centered and multiplicative scatter-corrected. ® BUTTM, buttermilk powders; CHESP, cheese powders; CHESS,
cheese seasonings; MILKE, milk-egg powders; ONION, onion powders; RANCH, ranch seasoning; WHEAT, wheat flours. ¢ Samples within
the specified group correctly placed in that group when testing using calibrations from all groups. ¢ Samples within the specified group
not correctly placed in that group when testing using calibrations from all groups. @ Samples from another group placed in specified
group when testing using calibrations from all groups. f Farthest distance from group of any correctly placed sample within the specified
group when testing using calibrations from all groups. 9 Lowest distance from group of any sample correctly identified as not being a
member of the group.

down to only 117 data points the resolution of the
resulting spectra is less than that of the nonaveraged
16-cm™! data, the question remains as to why the
difference. One possible explanation may lie in the way
the samples were scanned. The higher resolution scan
of a sample at 4 cm~1! takes approximately 4 times as
long as for 16-cm™* resolution for the same number of
scans. The longer scan time can result in the scan being
more representative of the sample as a whole. With a
static sample cup, this means that a single spot on the
sample cup is illuminated for a longer time and can

result in burning or damage to the sample. This has
been personally observed in the form of darkening of
some samples during other studies. While the transport
device reduces the chance of overheating by continually
moving the sample under the illumination spot (Reeves,
1996), it also means that different places on the sample
cup, and thus different subfractions of the sample, are
being scanned over the time period used for scanning.
For example, if only a single scan from 4000 to 400 cm™!
were made, and the transport was moved at a velocity
high enough to move the 50-mm sample path length
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Table 5. Discriminant Analysis with Two-Thirds of Each Group as a Calibration Set and One-Third as the Validation

Set2
group® CORRECT® INCORRECT¢ FALSEPOSIT® HICORRECTf LOWNEGAT?Y
Calibration Set
BUTTM 16 0 0 1.50 9.97
CHESP 10 0 0 1.41 14.99
CHESS 7 0 0 1.21 5.38
MILKE 10 0 0 1.39 4.96
ONION 8 0 0 1.32 14.80
RANCH 8 0 0 1.19 6.89
WHEAT 14 0 0 1.29 24.07
Validation Set
BUTTM 8 0 0 2.17 7.39
CHESP 4 0 0 1.27 15.74
CHESS 2 1 0 1.63 9.41
MILKE 4 1 0 2.85 7.04
ONION 3 1 0 1.94 15.30
RANCH 3 0 0 2.01 8.91
WHEAT 4 2 0 1.74 30.79

a 16-cm~1 resolution spectra from Digilab FTS-60 instrument, mean-centered and multiplicative scatter-corrected. ® BUTTM, buttermilk
powders; CHESP, cheese powders; CHESS, cheese seasonings; MILKE, milk-egg powders; ONION, onion powders; RANCH, ranch
seasoning; WHEAT, wheat flours. ¢ Samples within the specified group correctly placed in that group when testing using calibrations
from all groups. 9 Samples within the specified group not correctly placed in that group when testing using calibrations from all groups.
e Samples from another group placed in specified group when testing using calibrations from all groups. f Farthest distance from group
of any correctly placed sample within the specified group when testing using calibrations from all groups. 9 Lowest distance from group

of any sample correctly identified as not being a member of the group.

during the time it took for the single scan, then the data
collected at 4000 cm~* would be for the sample at the
front of the sample cell and that at 2200 cm™! for the
sample at the middle, etc. At the other extreme, a step
scan spectrometer coupled to a stepped transport device
could be set up to make a complete scan for each step
the transport and sample moved. For a completely
homogeneous sample, the results would be expected to
be the same for the two extremes, but manufactured
samples, such as those studied here, are rarely that
homogeneous, and when combined with the effects of
particle size differences and variations in the composi-
tion of particles and penetration depth of the mid-
infrared radiation (Olinger and Griffiths, 1993a,b),
scanning different fractions of the total sample at
different frequencies might result in an effect similar
to that caused by sample heterogeneity. Since the scans
taken at 4 cm~! took longer than the same number of
scans at 16 cm™1, the result would be that the higher
resolution data would see a more representative sub-
sample and therefore might result in better calibrations
as seen here. More comprehensive experiments will be
needed to determine the conditions and samples for
which resolution and/or scanning protocol are critical
for discriminant analysis using mid-infrared spectra.
FTS-60 Spectrometer: 16-cm~! Resolution Spectra,
Using Two-Thirds of Samples in the Calibration Sets
and One-Third as a Validation Set. The results when
using an independent data validation set for 16-cm™!
spectra are presented in Table 5. As can be seen, results
were not as good as those found using 4-cm~1 resolution
spectra with five samples incorrectly classified, as
opposed to one with the higher resolution spectra (Table
3). Efforts to improve the results, by trial and error
changes in the number of calibration factors used,
reduced the number of misclassified samples to one with
a distance of 3.27 from the CHESS group. Thus, like
the calibrations based on 4-cm™! resolution spectra,
determining the correct number of factors to use pro-
duced calibrations where all samples were separated
into the proper groups, although the separation between
samples in a group and those outside (high distance for
correctly classified samples versus low distance for

samples not in the group) was overall less for the 16-
cm~1 spectra. Finally, as with the 4-cm~! resolution
spectra, averaging spectral data points was not found
to be of any help.

Perkin-Elmer Model 2000 Spectrometer: 4-cm~! Reso-
lution Spectra, Using All Available Samples in the
Calibration Sets. The results using 4-cm~1! resolution
spectra from the Perkin-Elmer 2000 spectrometer in a
one-out cross-validation using all the samples in each
group may be seen in Table 6. As with the FTS-60
spectra, all samples were correctly classified using
mean-centered and multiplicative scatter-corrected data,
and the additional application of derivatives resulted
in a degradation of the results (data not shown). Other
than slightly higher distance values for samples not in
a group (LOWNEGAT), there was little difference
between these results and the results achieved using
the FTS-60 spectrometer with the transport device
(Table 2).

Perkin-EImer Model 2000 Spectrometer: 16-cm™!
Resolution Spectra, Using All Available Samples in the
Calibration Sets. As shown in Table 6, the results using
16-cm™1 resolution spectra from the Perkin-Elmer model
2000 instrument were very similar to that achieved with
the 4-cm~1 spectra with all samples properly classified
using mean-centered and multiplicative scatter-cor-
rected data. Further treatment with derivatives was
again of no additional benefit (data not shown). It is
interesting that, for the Perkin-Elmer 2000 data, using
the lower resolution spectra did not result in the
increase in incorrectly classified samples that occurred
for the FTS-60 data. In addition to using a static cell,
as discussed in the methods, the Perkin-Elmer 2000
instrument also collected data every 1 cm~1, whereas
the FTS-60 instrument collected data at a rate ap-
proximately one-half the designated resolution. As
discussed in the section on spectra, this appeared to
result in some sort of increased resolution, and this may
explain the results: the lower resolution Perkin-Elmer
spectra appearing as though they were actually recorded
at a higher resolution with reduced noise and thus
producing higher quality calibrations. In any case, the
results showed that quality calibrations were attainable
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Table 6. Discriminant Results Using Spectra from Perkin-Elmer 2000 Spectrometer?

group® CORRECTH INCORRECT?® FALSEPOSITf HICORRECTY LOWNEGAT"
All Samples in Calibration Sets
No Derivative (4-cm~! resolution)®
BUTTM 24 0 0 1.36 6.21
CHESP 14 0 0 1.38 68.36
CHESS 10 0 0 1.49 22.32
MILKE 15 0 0 1.19 5.16
ONION 12 0 0 1.26 27.21
RANCH 11 0 0 1.28 10.83
WHEAT 20 0 0 1.24 51.40
No Derivative (16-cm~! resolution)®
BUTTM 24 0 0 1.14 9.41
CHESP 14 0 0 1.34 66.47
CHESS 10 0 0 1.50 13.22
MILKE 15 0 0 121 15.01
ONION 12 0 0 1.17 24.80
RANCH 11 0 0 1.48 10.17
WHEAT 20 0 0 1.38 39.83
Split Two-Thirds as Calibration Sets, One-Third as Validation Set

Calibration Set (4-cm~1 spectra)i
BUTTM 16 0 2 1.45 3.02
CHESP 10 0 0 1.34 33.82
CHESS 7 0 0 1.33 10.66
MILKE 10 0 0 1.37 7.86
ONION 8 0 0 1.54 8.73
RANCH 8 0 0 1.13 13.48
WHEAT 14 0 0 1.34 26.32

Validation Set (4-cm~! spectra)’
BUTTM 7 1 1 2.58 3.02
CHESP 4 0 0 0.98 32.68
CHESS 3 0 0 2.85 15.50
MILKE 5 0 0 1.83 8.38
ONION 3 1 0 1.32 8.00
RANCH 2 1 0 1.07 14.09
WHEAT 5 1 0 2.69 26.49

a All spectra mean-centered and multiplicative scatter-corrected. ® All samples within each group used. ¢ BUTTM, buttermilk powders;
CHESP, cheese powders; CHESS, cheese seasonings; MILKE, milk-egg powders; ONION, onion powders; RANCH, ranch seasoning;
WHEAT, wheat flours. ¢ Samples within the specified group correctly placed in that group when testing using calibrations from all groups.
e Samples within the specified group not correctly placed in that group when testing using calibrations from all groups. f Samples from
another group placed in specified group when testing using calibrations from all groups. 9 Farthest distance from group of any correctly
placed sample within the specified group when testing using calibrations from all groups. " Lowest distance from group of any sample
correctly identified as not being a member of the group. ' Two-thirds of samples in each group used in the calibration sets and remaining

one-third used as the validation set.

based on spectra collected on the Perkin-Elmer spec-
trometer using a static cup.

Perkin-Elmer Model 2000 Spectrometer: 4-cm~! Reso-
lution Spectra, Using Two-Thirds of Samples in the
Calibration Sets and One-Third as a Validation Set.
Table 6 also contains the results using an independent
validation set for 4-cm~! spectra generated on the
Perkin-Elmer spectrometer. As with the other data
sets, dividing the samples into a calibration set and
testing on an independent validation led to an increase
in incorrectly classified samples. Adjusting the number
of factors used (data not shown) eliminated the false
positives in both the calibration and validation sets and
resulted in validation set results containing five samples
misclassified with distances of 3.52 and 5.38 (MILKE),
7.14 (BUTTM), 4.44 (ONION), and 3.58 (RANCH), all
well separated from nongroup samples, but not as good
as found using the 4-cm~1 resolution spectra from the
FTS-60 instrument, where only two misclassified samples
(based on a distance of 3.0 for proper classification)
were produced after factor adjustment (Table 3). Fi-
nally, the results using a validation set and 16-cm™!
data were similar to those found with 4-cm~! spec-
tra, in that manipulation of calibration factors was
necessary to achieve the best classification (data not
shown).

Math Pretreatments in General. In addition to
the efforts shown in the various tables, other efforts at
treating the spectra were investigated. These include
the use of standard normal variate with and without
detrend, variance scaling in combination with mean
centering, limiting the spectral range used, and other
derivatives. While all combinations were not tried on
all the different data sets, the ones tried were not found
to be of any added benefit. It is possible that a
particular combination may help under some circum-
stances, but in general, it appears that for mid-infrared
spectra only mean centering and multiplicative scatter
correction need be used to develop accurate discriminant
calibrations. This is in contrast to NIR spectra (Reeves
and Zapf, unpublished data) and to quantitative analy-
sis using mid-infrared spectra (Reeves, 1996), where
derivatives were found to be very beneficial in both cases
and variance scaling was useful for quantitative work
in both regions.

CONCLUSIONS

Results using mid-infrared spectra from two different
makes of Fourier transform spectrometers demon-
strated that discriminant analysis of neat powders of
food ingredients can be successfully carried out. In
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general, it was found that results using 4-cm~1 resolu-
tion spectra were somewhat superior to those based on
lower resolution 16-cm™1, but good results could be
obtained at either resolution. While correct classifica-
tions could be achieved using factor selection based on
the average predicted distance or F-test indicators when
using one-out cross-validations using all available sam-
ples, when an independent validation set was used (one-
third of total samples), adjustment of the number of
factors to use was required for the best results. This
may be due to the specific subset of samples in the cali-
bration sets and/or the diversity of the samples used
within a set which resulted in differences between sam-
ples in the two sets. In conclusion, efforts have dem-
onstrated the feasibility of discriminant analysis using
mid-infrared spectra of neat food ingredient powders.
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